
Overview of Fortran 90/95

Names
starts with a letter●

letters, digits, and underscores (_)●

up to 31 characters long●

Next slide

Introduction

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld001.htm [4/10/2000 1:37:19 PM]

Program Form
! No special columns
! Upper and lower case letters
! Case insensitive

x = y + 4 ! Trailing comments

! Continuation on line to be continued
print *, &
 x, y, polar_coordinates

! Multiple statements per line
Temp = a; a = b; b = Temp

! Significant blanks
do i= 1, 99 ! First blank required

Previous slide Next slide

Learn more about source form.

form

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld002.htm [4/10/2000 1:37:19 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/source.html

Declarations
A new form of declaration, called an entity-oriented declaration, allows all of the characteristics of one
object to be specified in one statement.

Each such declaration begins with the type, followed by other attributes (e.g., dimension, save,
allocatable), followed by a double colon and the list of names to have those attributes.

Here are some examples:

real :: x, y, polar_coordinates

integer, dimension(10,10), save :: counts = 0

Previous slide Next slide

Learn more about data initialization.

declarations

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld003.htm [4/10/2000 1:37:19 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/init.html

Parameters
A parameter (named constant) may be given its type and value in one statement.

integer, parameter :: number_of_states = 50

Previous slide Next slide

Learn more about parameters.

parameters

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld004.htm [4/10/2000 1:37:19 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/parameter.html

Style of declarations
With these new forms, there are too many ways to write declarations One style should be picked and
used consistently.

Here are a few of the equivalent ways to declare the variable NAME to be a 4x5 array of character strings,
each of length 20.

character NAME (4, 5) * 20
character NAME (4, 5) * (20)
character :: NAME (4, 5) * (20)
character * 20 NAME (4, 5)
character * (20) NAME (4, 5)
character * (20) :: NAME (4, 5)
character (len = 20) :: NAME (4, 5)
character (len = 20), dimension (4, 5) :: NAME
character, dimension (4, 5) :: NAME * 20
character, dimension (4, 5) :: NAME * (20)

Previous slide Next slide

Learn more about character data.

style

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld005.htm [4/10/2000 1:37:19 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/character.html

The F Programming Language
As illustrated by the declarations in the two previous slides, there are often too many ways to do things in
Fortran. To be consistent and portable and to ensure that you are using modern constructs when writing
new code or enhancing older codes, use F. F is a subset of Fortran 90/95 consisting of the moder
features; not included are redundant, error prone older ways of doing the same things. [Note: F is not
suitable for compiling legacy codes because many Fortran 77 and Fortran 90 features are not included.]

There are F implementations for Windows 95/NT, most Unix workstations, and the Mac. Previous slide
Next slide

F

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld006.htm [4/10/2000 1:37:20 PM]

http://www.uni-comp.com/imagine1/

Size of Statements
Maximum line length is 132 characters.●

Maximum number of continued lines is 39.●

So maximum statement length is 40x132 = 5280 characters.●

There is a free source form converter (fixed-to-free). Previous slide Next slide

size

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld007.htm [4/10/2000 1:37:20 PM]

ftp://ftp.numerical.rl.ac.uk/pub/MandR/convert.f90

Continuation of Character Strings
An ampersand placed on the continued line indicates that the source is to start in the next position. This
scheme may be used to break in places where white space is not allowed.

text = "This is a real&
 &ly long string."
tax = tax_&
 &rate * income

Previous slide Next slide

constring

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld008.htm [4/10/2000 1:37:20 PM]

Rules for Free and Fixed Form
It is possible to write programs in a way that is acceptable as both free source form and fixed source
form. The rules are:

Put labels in positions 1-5.1.

Put statement bodies in positions 7-72.2.

Begin comments with an exclamation (!) in any position except 6.3.

Indicate all continuations with an ampersand in position 73 of the line to be continued and an
ampersand in position 6 of the continuing line.

4.

Previous slide Next slide

rulesffform

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld009.htm [4/10/2000 1:37:20 PM]

Exercise
Write and run a program that computes the sum of the integers 1 through 9, preceded by a short
message explaining what the output is.

1.

Previous slide Next slide

exsum

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld010.htm [4/10/2000 1:37:20 PM]

Data Types
There are five intrinsic data types:

integer●

real●

complex●

logical●

character●

The programmer may define additional (derived) data types.

Learn more about the integer type.
Learn more about the real type.
Learn more about the complex type.
Learn more about the logical type.
Learn more about the character type. Previous slide Next slide

types

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld011.htm [4/10/2000 1:37:20 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/integer.html
http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/real.html
http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/complex.html
http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/logical.html
http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/character.html

Kind Parameters
Each type has one or more kinds that indicate the machine representation of values of that type and kind.
They are indicated by integers with system-dependent values.

A variable may be declared to have a particular kind:

real (2) :: x, y, z
integer (kind = short) :: q28, much_less
character (len = 20, kind = kanji) :: name

Each type has a default kind. The real type has at least one other kind that corresponds to Fortran 77
double precision. There must be the same kinds of complex as there are for real. There must be at least
one (the default) kind for logical and character. There may be other kinds for any of the data types.

There are conversion functions to convert values to a data type and kind.

Learn more about type conversion intrinsic functions.
Learn more about kind type parameters. Previous slide Next slide

kinds

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld012.htm [4/10/2000 1:37:20 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/intfunconv.html
http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/kind.html

selected_real_kind
This intrinsic function produces a kind number of a real representation having a certain minimum
precision, and a minimum range, if given. The following gives a kind that has at least 9 digits of
precision and a range of values to 1070:

selected_real_kind (9, 70)

Previous slide Next slide

srk

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld013.htm [4/10/2000 1:37:21 PM]

selected_int_kind
selected_int_kind permits a range of integers, up to a given number of digits. For example, integers
declared to have kind

selected_int_kind (6)

may have values between -999,999 and +999,999. Previous slide Next slide

sik

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld014.htm [4/10/2000 1:37:21 PM]

Declaring Variables with Kinds and Writing
Nondefault Kind Constants
integer, parameter :: &
 single = kind (0.0), &
 double = 8 ! Processor dependent
 . . .
real (kind = 8) x, y, z
real (double) :: d, e, f
real (selected_real_kind (10, 80)) &
 :: p, q, r
 . . .
call s (d)
 . . .
subroutine s (x)
real (8) x
real (kind = kind (x)) :: t1, t2
t1 = 1.0_8 / 3
 . . .

Previous slide Next slide

declaring

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld015.htm [4/10/2000 1:37:21 PM]

integer (kind = 5) j1, j2
integer (selected_int_kind (6)) j3

j1 = 49_5 ** 2
j3 = 999999

Previous slide Next slide

declaringint

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld016.htm [4/10/2000 1:37:21 PM]

integer, parameter :: greek = 6
 . . .
character (len = 5, kind = greek) &
 greek_island
 . . .
greek_island = greek_'µµµµµ'

Note that the kind precedes the rest of the character constant. Previous slide Next slide

greek

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld017.htm [4/10/2000 1:37:21 PM]

implicit none

The implicit none statement turns off all implicit typing. It should be used in every new program.

Other uses are discouraged, but click here if you need to know how it works.

Learn more about implicit typing. Previous slide Next slide

implicitnone

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld018.htm [4/10/2000 1:37:21 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/implicit.html
http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/implicit.html

Precision-Related Intrinsic Functions
digits
epsilon
exponent
fraction
huge
maxexponent
minexponent
nearest
precision
radix
range
rrspacing
scale
set_exponent
spacing
tiny

Learn more about inquiry and model intrinsic functions. Previous slide Next slide

precision

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld019.htm [4/10/2000 1:37:21 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/intfunim.html

Exercise
Determine the number of one real kind that has precision greater than that of the default real kind
on your computer system.

1.

Previous slide Next slide

exkind

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld020.htm [4/10/2000 1:37:22 PM]

Expressions
Expressions are the formulas of FORmula TRANslation.

They may appear in many different contexts in a Fortran program, but the rules are essentially the same
as in Fortran 77.

There are two special forms of expressions:

specification expressions●

initialization expressions●

The rules about what may appear in these special expressions are quite complicated. The end result is
that the value of an initialization expression (e.g., the value of a parameter) is known at compile time and
the value of a specification expression (e.g., array bounds) is known when a procedure is entered. Follow
the links above to learn more.

Learn more about expressions. Previous slide Next slide

expressions

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld021.htm [4/10/2000 1:37:22 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/expspec.html
http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/expinit.html
http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/expressions.html

Operator Precedence
The following table reviews the precedence of Fortran operators, including user-defined operators.

Category
of operator Operator Precedence

In context
of equal

precedence

Extension Unary defined operator Highest N/A

Numeric

** . Right-to-left

* or / . Left-to-right

Unary + or - . N/A

Binary + or - . Left-to-right

Character // . Left-to-right

Relational
.eq., .ne., .lt., .le., .gt., .ge. . N/A

==, /=, <, <=, >, >= . N/A

Logical

.not. . N/A

.and. . Left-to-right

.or. . Left-to-right

.eqv., .neqv. . Left-to-right

Extension Binary defined operator Lowest Left-to-right

Previous slide Next slide

precedence

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld022.htm [4/10/2000 1:37:22 PM]

Formation, Interpretation, and Evaluation of
Expressions
The syntax rules indicate how to form valid expressions (syntax); other rules, such as operator
precedence, indicate how to interpret an expression (the semantics). Once all this is established, the
system may actually do the computation in a completely different order, as long as the method is
mathematically equivalent and groupings by parentheses are not modified. Previous slide Next slide

expressions1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld023.htm [4/10/2000 1:37:22 PM]

Examples of equivalent expressions:

Expression Equivalent

x + y y + x

x * y y * x

- x + y y - x

x + y + z x + (y + z)

x - y + z x - (y - z)

x * a / z x * (a / z)

x * y - x * z x * (y - z)

a / b / c a / (b * c)

a / 5.0 0.2 * a

Previous slide Next slide

expressions2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld024.htm [4/10/2000 1:37:22 PM]

Examples of expressions that are not equivalent:

Expression Not equivalent

i / 2 0.5 * i

x * i / j x * (i / j)

i / j / a i / (j * a)

Previous slide Next slide

notequiv

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld025.htm [4/10/2000 1:37:22 PM]

Examples of equivalent expressions that may not be evaluated because of parentheses:

Expression Not transformable to:

(x + y) + z x + (y + z)

(x * y) - (x * z) x * (y - z)

x * (y - z) x * y - x * z

Previous slide Next slide

parens

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld026.htm [4/10/2000 1:37:22 PM]

Exercise

Write a program to compute the quantity ei pi. The constant pi can be computed by the formula pi
= 4 * atan (1.0) since tan (pi/4) = 1. The complex constant i can be written (0,1). The built-in
function exp (z) is used for raising the mathematical constant e to a power. The output should look
like:

run eipi

 The value of e to the power i*pi is _ _ _

1.

Previous slide

epii

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod1/slides/tsld027.htm [4/10/2000 1:37:23 PM]

	hpc.mil
	Introduction
	form
	declarations
	parameters
	style
	F
	size
	constring
	rulesffform
	exsum
	types
	kinds
	srk
	sik
	declaring
	declaringint
	greek
	implicitnone
	precision
	exkind
	expressions
	precedence
	expressions1
	expressions2
	notequiv
	parens
	epii

